Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 116: 64-71, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29887019

RESUMO

The catalytic behavior of a membrane-bound lipolytic enzyme (MBL-Enzyme) from the microalgae Nannochloropsis oceanica CCMP1779 was investigated. The biocatalyst showed maximum activity at 50 °C and pH 7.0, and was stable at pH 7.0 and temperatures from 40 to 60 °C. Half-lives at 60 °C, 70 °C and 80 °C were found 866.38, 150.67 and 85.57 min respectively. Thermal deactivation energy was 68.87 kJ mol-1. The enzyme's enthalpy (ΔΗ*), entropy (ΔS*) and Gibb's free energy (ΔG*) were in the range of 65.86-66.27 kJ mol-1, 132.38-140.64 J mol-1 K-1 and 107.80-115.81 kJ mol-1, respectively. Among p-nitrophenyl esters of fatty acids tested, MBL-Enzyme exhibited the highest hydrolytic activity against p-nitrophenyl palmitate (pNPP). The Km and Vmax values were found 0.051 mM and of 0.054 mmole pNP mg protein-1 min-1, respectively with pNPP as substrate. The presence of Mn2+ increased lipolytic activity by 68.25%, while Fe3+ and Cu2+ ions had the strongest inhibitory effect. MBL-Enzyme was stable in the presence of water miscible (66% of the initial activity in ethanol) and water immiscible (71% of the initial activity in n-octane) solvents. Myristic acid was found to be the most efficient acyl donor in esterification reactions with ethanol. Methanol was the best acyl acceptor among the primary alcohols tested.


Assuntos
Enzimas/química , Microalgas/enzimologia , Estramenópilas/enzimologia , Biocatálise , Membrana Celular/enzimologia , Estabilidade Enzimática , Enzimas/metabolismo , Ésteres/química , Etanol/química , Ácidos Graxos/química , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Metanol/química , Microalgas/química , Palmitatos/química , Estramenópilas/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...